Jak przypomniał dr hab. Robert Musioł, terapia fotodynamiczna polega na wprowadzaniu do organizmu chorego substancji fotowrażliwych, kumulujących się w zmienionych chorobowo komórkach, które pod wpływem światła generują zabójcze rodniki tlenowe, zabijając niechciane komórki. W ten sposób bardzo precyzyjnie można usunąć z organizmu np. nowotwory.

Reklama

Niestety, dotychczas stosowane metody nie są idealne. Pojawiają się problemy z niską efektywnością terapii, ponieważ światło stosunkowo płytko penetruje tkankę – jedynie na kilka milimetrów. Największym problemem jest więc to, że stosując dopuszczone obecnie do obrotu fotouczulacze zmuszeni jesteśmy do poruszania się tylko po powierzchniowej warstwie tkanki. W związku z tym nie jest możliwe pełne usunięcie dużych guzów, zawsze gdzieś tam w głębi coś zostanie – wyjaśnia naukowiec, który na co dzień zajmuje się m.in. badaniem i poszukiwaniem nowych potencjalnych leków.

Jedną z szans na poprawę efektowności fototerapii może być opracowanie takich leków, które ulepszyłyby skuteczność działania fotouczulacza, a jednocześnie "weszłyby" do komórek głębiej niż światło. – Wtedy, oprócz zewnętrznego atakowania nowotworu światłem, nawet jeżeli nie usuniemy całkiem nowotworu naświetlając dane miejsce – jest szansa, że ten drugi, "wewnętrzny" lek uzupełni to działanie – tłumaczył Musioł.

Opatentowany przez naukowców UŚ wynalazek to mieszanina tiosemikarbazonu 2-karbaldehydu-3-aminopirydyny z fotouczulaczem. Jest ona chelatorem żelaza, powodującym "wychwyt" tego mikroelementu z komórek.

Najczęściej stosowane obecnie pochodne kwasu aminolewulinowego w procesie akumulacji fotouczulacza wykorzystują naturalne mechanizmy występujące w komórkach i związane z metabolizmem żelaza. Na końcu tego procesu powstaje wrażliwa na światło protoporfiryna IX, która poprzez wiązanie żelaza przetwarzana jest na cząsteczkę hemu. Ponieważ hem nie wykazuje własności fotouczulacza – pojawiła się koncepcja, aby zmniejszyć stężenie metalu – tłumaczył.

Reklama

Dodał, że zmniejszenie ilości żelaza w komórce nowotworowej pozwala jeszcze efektywniej tworzyć fotowrażliwą protoporfirynę. Jedocześnie naukowcy w trakcie swoich badań zaobserwowali, że niektóre środki wiążące żelazo dodatkowo zwiększają efektywność terapii poprzez inne mechanizmy, polegające na wytwarzaniu wolnych rodników tlenowych. – W ten sposób uzyskuje się wzmocniony, niejako kaskadowy efekt terapeutyczny - wyjaśnił Musioł.

Dzięki uzyskanemu w ten sposób efektowi synergii możliwe jest zmniejszenie dawkowania leku, co z kolei eliminuje występowanie efektów ubocznych. Z przeprowadzonych na UŚ badań wynika bowiem, że 95-procentową skuteczność mieszaniny względem komórek nowotworu jelita grubego HCT116 można uzyskać przy ośmiokrotnie niższej dawce chelatora niż przy zastosowaniu monoterapii. – Na razie są to eksperymenty przeprowadzone w warunkach in vitro, dalszym krokiem może być "in vivo", czyli praca na modelu zwierzęcym, a potem dopiero ewentualnie wdrażanie. Niestety, wszystko rozbija się przede wszystkim o finansowe możliwości – dodał.

Reklama

Jak podał Musioł, w Polsce terapia fotodynamiczna jest już stosowana. – I okazuje się, że w niektórych przypadkach, czasem bardzo skomplikowanych, jak w przypadku nowotworów mózgu, ale i nowotworów jelit czy płuc, sprawdza się – wskazał.

Ma ona także zastosowanie np. w diagnostyce czy chirurgii. – Fotouczulacz, który podajemy w trakcie przygotowania do terapii, kumuluje się w tkance zmienionej chorobowo, i jeżeli oświetlimy ją, to zaczyna świecić inaczej, niż otaczające ją, zdrowe tkanki. Stąd też przeprowadza się terapie łączone. Wtedy np. chirurg widzi, co ma usunąć, a jednocześnie ogniska nowotworu zbyt małe do resekcji zostaną zniszczone przy pomocy fotouczulacza i światła – tłumaczył.

Zdaniem Musioła terapia fotodynamiczna jest tańsza niż radio- czy chemioterapia. Jest też mniej szkodliwa dla pacjenta. – Stosując radioterapię, bardzo często przy okazji nowotworu naświetlamy resztę ciała pacjenta, co wiąże się z dużą ilością efektów ubocznych. Tutaj mamy zwykle diodę laserową, która jest relatywnie tania i można ją oświetlać niewielką część ciała – podał.

Dlatego w tej kwestii – dodał naukowiec – wada względnie płytkiego wnikania światła w tkankę staje się zaletą. – Nowotwory, które nie są rozrzucone po ciele, nie są przerzutami, tylko jednolitymi guzami lub znamionami na skórze, relatywnie łatwo można punktowo naświetlać. Takie podejście sprawdza się szczególnie dobrze w przypadku leczenia zmian skórnych czy błon śluzowych – uzupełnił.

Twórcami opatentowanego niedawno wynalazku są pracownicy Wydziału Matematyki, Fizyki i Chemii Uniwersytetu Śląskiego: dr Anna Mrozek-Wilczkiewicz, prof. dr hab. Alicja Ratuszna, dr hab. Robert Musioł oraz prof. dr hab. inż. Jarosław Polański. W najbliższym czasie naukowcy planują dalsze badania nad innymi liniami komórkowymi i przygotowaniem do prac na zwierzętach w ramach grantu NCN realizowanego przez dr Mrozek-Wilczkiewicz.